基尼系数计算方法
- 2023-11-18 22:36:28
基尼系数计算方法
为直接计算法、拟合曲线法、分组计算法和分解法。
1、直接计算法直接计算法在基尼提出收入不平等的一种度量时,就已经给出了具体算法,而且这种算法并不依赖于洛伦茨曲线,它直接度量收入不平等的程度。定义 n n j=1 i=1YjYi/n2, 02u 式(2)式中,是基尼平均差,YjYi是任何一对收入样本差的绝对值,n是样本容量,u是收入均值。定义G=/2u, 0G1 式(3)可以证明:G=/2u2SA(证明过程见附录一),而由式(1)G= SA/ SA+B,SA+B=1/2,G=2SA,因此,式(2)中定义的G即为基尼系数,综合式(2)、(3),基尼系数的计算方法为:G= 1 2n2 u n n j=1 i=1YjYi 式(4)直接计算法只涉及居民收入样本数据的算术运算,很多学者认为理论上看,只要不存在来源于样本数据方面的误差,就不存在产生误差的环节。实际上,在附录一证明过程当中将看到,直接计算法依然采用了以直代曲法计算面积,只不过这个过程在样本数据范围内达到了最小近似,其精确度直接取决于样本数据本身。因此,可以认为它不带任何误差的计算了样本数据的基尼系数值。
2、拟合曲线法拟合曲线法计算基尼系数的思路是采用数学方法拟合出洛伦茨曲线,得出曲线的函数表达式,然后用积分法求出B的面积,计算基尼系数。通常是通过设定洛伦茨曲线方程,用回归的方法求出参数,再计算积分。例如,设定洛伦茨曲线的函数关系式为幂函数: I=P 式(5)根据选定的样本数据,用回归法求出洛伦茨曲线,例如,m,=n.求积分SB=01 mpndp= m n+1 式(6)计算G= SA SA+B = SA+BSB SA+B 1 2m n+1 式(7)拟合曲线法的在两个环节容易产生谬误:一是拟合洛伦茨曲线,得出函数表达式的过程中,可能产生误差;二是拟合出来的函数应该是可积的,否则就无法计算。
3、分组计算法这种方法的思路有点类似用几何定义计算积分的方法,在X轴上寻找n个分点,将洛伦茨曲线下方的区域分成n部分,每部分用以直代曲的方法计算面积,然后加总求出面积。分点越多,就越准确,当分点达到无穷大时,则为精确计算。图二OXY ECABP假设分为n组,每组的收入为Yi,则每个部分P的面积为:SP= 1 i-1Yi i Yi 2n nYi 式(8)加总得到:G= SA SA+B = SA+BSB SA+B 12lim k n 1 i-1Yi i Yi 2n nYi 式(9)这是精确计算基尼系数的表达式,当分点n个数有限时,定义:yi= Yi nYi 式(10)得到近似表达式:G=2SA= 2 n (y1+2y2+···nyn)( n+1 n ) 式(11)(证明过程见附录二)分组计算法不依赖于洛伦茨曲线的函数形式,但在以直代曲的环节会出现误差,增加分点的个数可以减少这种误差。
4、分解法上述的计算方法的最终目的都在于求出基尼系数的值,而分解法则是在求出上述值的基础上,力图研究基尼系数的构成因素,除了得出总的基尼系数的信息之外,在计算过程中还能够获得分解部分内部的基尼系数值。另外,分解法求出基尼系数的过程一般都依赖于已有部分的基尼系数的值,从这个意义上说,分解法并不是独立计算基尼系数的方法,它更重要的意义在于对基尼系数的分解,即定义的各个不同基尼系数值之间的相互关系。伦敦经济学院收入分配方法论专家Cowell教授提出,基尼系数在不同人群组之间无法完全分解于尽。
基尼系数计算方法
基尼系数计算公式:
G=1+∑YiPi-2∑(∑Pi)′Yi
上式中,G代表基尼系数,Yi代表第i组人口总收入占全部人口总收入的比例,Pi代表第i组人口数占全部人口总数的比重,(∑Pi)′表示累计到第i组的人口总数占全部人口总数的比重。
赫希曼根据洛伦茨曲线提出的判断分配平等程度的指标。设实际收入分配曲线和收入分配绝对平等曲线之间的面积为A,实际收入分配曲线右下方的面积为B。并以A除以(A+B)的商表示不平等程度。这个数值被称为基尼系数或称洛伦茨系数。
声明:本文内容及图片来源于读者投稿,本网站无法甄别是否为投稿用户创作以及文章的准确性,本站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。请将本侵权页面网址发送邮件到583666585@qq.com,我们会及时做删除处理。