3数学,求曲线r=3cosx,r=1+cosx所围平面图形公共部分的面积?
- 2023-05-15 23:24:20
3数学,求曲线r=3cosx,r=1+cosx所围平面图形公共部分的面积?
面积为2 + 7π/4。 求解过程如下: 因为r = 3cosθ,r = 1 + cosθ 所以3cosθ = 1 + cosθ cosθ = 1/2 θ = π/3 或 2π - π/3 = 5π/3 交点为(3/2,π/3)和(3/2,5π/3) 所以阴影面积: = 2[∫(0→π/3) (1/2)(3cosθ)2 dθ + ∫(π/3→π/2) (1/2)(1 + cosθ)2 dθ] = (9/2)∫(0→π/3) (1 + cos2θ) dθ + ∫(π/3→π/2) (1 + 2cosθ + cos2θ) dθ = (9/2)[θ + sinθcosθ] |(0→π/3) + [θ + 2sinθ + (1/2)(θ + sinθcosθ)] |(π/3→π/2) = (9/2)[π/3 + (√3/2)(1/2)] + [π/2 + 2 + (1/2)(π/2)] - [π/3 + √3 + (1/2)(π/3 + (√3/2)(1/2))] = 2 + 7π/4 即曲线r=3cosx,r=1+cosx所围平面图形公共部分的面积为2 + 7π/4。
声明:本文内容及图片来源于读者投稿,本网站无法甄别是否为投稿用户创作以及文章的准确性,本站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。请将本侵权页面网址发送邮件到583666585@qq.com,我们会及时做删除处理。