当前位置:首页 > 装备 > 方阵可逆是什么意思?

方阵可逆是什么意思?

  • 2023-07-03 17:56:06

方阵可逆是什么意思?

方阵可逆是什么意思?

证明矩阵可逆的方法如下

1、矩阵的秩小于n,那么这个矩阵不可逆,反之可逆;

2、矩阵行列式的值为0,那么这个矩阵不可逆,反之可逆;

3、对于齐次线性方程AX=0,若方程只有零解,那么这个矩阵可逆,反之若有无穷解则矩阵不可逆;

4、对于非齐次线性方程AX=b,若方程只有特解,那么这个矩阵可逆,反之若有无穷解则矩阵不可逆。

一、逆矩阵

设A是数域上的一个n阶方阵,若在相同数域上存在另一个n阶矩阵B,使得: AB=BA=E。 则我们称B是A的逆矩阵,而A则被称为可逆矩阵。

注:E为单位矩阵。

二、定义

一个n阶方阵A称为可逆的,或非奇异的,如果存在一个n阶方阵B,使得AB=BA=E.

并称B是A的一个逆矩阵。不可逆的矩阵称为非奇异矩阵。A的逆矩阵记作A-1。

三、性质

1、可逆矩阵一定是方阵。

2、(唯一性)如果矩阵A是可逆的,其逆矩阵是唯一的。

3、A的逆矩阵的逆矩阵还是A。记作(A-1)-1=A。

4、可逆矩阵A的转置矩阵AT也可逆,并且(AT)-1=(A-1)T (转置的逆等于逆的转置)

5、若矩阵A可逆,则矩阵A满足消去律。即AB=O(或BA=O),则B=O,AB=AC(或BA=CA),则B=C。

6、两个可逆矩阵的乘积依然可逆。

7、矩阵可逆当且仅当它是满秩矩阵。

4、证明

1、逆矩阵是对方阵定义的,因此逆矩阵一定是方阵。

设B与C都为A的逆矩阵,则有B=C。

2、假设B和C均是A的逆矩阵,B=BI=B(AC)=(BA)C=IC=IC,因此某矩阵的任意两个逆矩阵相等。

3、由逆矩阵的唯一性,A-1的逆矩阵可写作(A-1)-1和A,因此相等。

4、矩阵A可逆,有AA-1=I 。(A-1) TAT=(AA-1)T=IT=I ,AT(A-1)T=(A-1A)T=IT=I

5、由可逆矩阵的定义可知,AT可逆,其逆矩阵为(A-1)T。而(AT)-1也是AT的逆矩阵,由逆矩阵的唯一性,因此(AT)-1=(A-1)T。

1)在AB=O两端同时左乘A-1(BA=O同理可证),得A-1(AB)=A-1O=O

而B=IB=(AA-1)B=A-1(AB),故B=O

2)由AB=AC(BA=CA同理可证),AB-AC=A(B-C)=O,等式两边同左乘A-1,因A可逆AA-1=I 。

得B-C=O,即B=C。

声明:本文内容及图片来源于读者投稿,本网站无法甄别是否为投稿用户创作以及文章的准确性,本站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。请将本侵权页面网址发送邮件到583666585@qq.com,我们会及时做删除处理。

热门阅读

最新文章